A Self-Adaptive Double Q-Backstepping Trajectory Tracking Control Approach Based on Reinforcement Learning for Mobile Robots

نویسندگان

چکیده

When a mobile robot inspects tasks with complex requirements indoors, the traditional backstepping method cannot guarantee accuracy of trajectory, leading to problems such as instrument not being inside image and focus failure when grabs high zoom. In order solve this problem, paper proposes an adaptive based on double Q-learning for tracking controlling trajectory robots. We design incremental model-free algorithm Double-Q learning, which can quickly learn rectify controller gain online. For rectification problem in non-uniform state space exploration, we propose active learning exploration that incorporates memory playback well experience mechanisms achieve online fast agents. To verify feasibility algorithm, perform verification different types trajectories Gazebo physical platforms. The results show control be used controller’s gain. Compared Backstepping-Fractional-Older PID Fuzzy-Backstepping controller, Double Q-backstepping has better robustness, generalization, real-time, stronger anti-disturbance capability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots

This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances.  On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...

متن کامل

Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Abstract—In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime mo...

متن کامل

Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV

This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...

متن کامل

Trajectory Tracking Control Based on Adaptive Neural Dynamics for Four-wheel Drive Omni- Directional Mobile Robots

Article history: Received: 24.01.2014. Received in revised form: 05.03.2014. Accepted: 10.03.2014. There is usually the speed jump problem existing in conventional back-stepping tracking control for four-wheel drive omni-directional mobile robots, a trajectory tracking controller based on adaptive neural dynamics model is proposed. Because of the smoothness and boundedness of the output from th...

متن کامل

Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control

In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Actuators

سال: 2023

ISSN: ['2076-0825']

DOI: https://doi.org/10.3390/act12080326